Index

「原子力の日」を迎えて
原子力の安全確保「原子力安全基盤機構の役割」………………… 成合 英樹 1
フィルムパッジのできたころ：乗鞍岳から原研へ………………… 田ノ岡 宏 4
五感に訴えない放射線のニュースをオオトリの六感で捉えるカレント・トピックス
“所持の制限”……………………………………………………… 鴻 知己 8
[加藤和明の放射線一口講義]
個人線量計の着用基準(1)…………………………………………… 加藤 和明 9
自然に学び自然を真似る原子力（その1）……………………… 藤家 洋一 10
[テクノルコーナー]
放射線計測器校正装置 ……………………………………………… 15
PET サマーセミナー2005 in 富士に参加して……………………… 佐野 智久 17
平成17年度主任者部会年次大会 …………………………………… 18
サービス部門からのお知らせ ……………………………………… 19
「原子力の日」を迎えて

原子力の安全確保

「原子力安全基盤機構の役割」

成合 英樹*

（はじめに）

私の所属する独立行政法人原子力安全基盤機構（以下、機関、Japan Nuclear Energy Safety Organization略称JNES）が平成15年10月1日に設立されて丁度2年が経過しました。1年前の平成14年8月末に東京電力の原子力発電所での自主点検記録の不正問題などが発覚し、平成15年10月1日に原子力施設の新たな検査制度の導入など、新しい原子力の安全規制が始まりましたが、目玉の一つが機構の設立であったこともあり、当初は新聞雑誌等でもかなり関心を持たれました。確かに、規制に責任を持つ原子力安全・保安院（以下、保安院）と連携し、原子力の安全確保のための専門的業務を行う機関ということで、電力会社やメーカー等の原子力関係者には強い関心が持たれていますが、しかし、2年経ってみると、思ったより世間の認知度の低いことが感じられます。専門性が高く一般に理解されにくいということと共に、原子力の安全確保が保安院の規制行政という形で表面に現れるだけである。それを専門家集団として支えている機関の成果は、今後、核事故のない時に見えて見えるべきということもあろうでしょう。さらに、放射線障害防止に直接関係する業務を行わないということもあり、特に放射線関係者への認知度は低いように思います。

（機関の業務）

機関は独立行政法人として経済産業大臣より1期（今期は3年半）ごとの中期目標を与えられ、これに対して機関が中期計画と各年度ごとの年度計画（前者は経済産業大臣の認可を受け後者は届け出）をたてて業務を行います。機関の殆どの予算は運営費交付金として国から与えられますが、この原資は電源開発特別会計の立地指定と利用限定です。その他もくくえ電力株式は発送者から指名されて、またこの運営費交付金とは別に、保安院あるいは原子力安全委員会を含む他省庁からの委託金があります。年度予算はこれらを合わせて約260億円で運営費交付金はこのうち約240億円です。機関の業務は毎年度、独立行政法人評価委員会の評価を受けますが、実質上の評価は原子力安全基盤機構部会にて行われます。機関は、原子力施設に関する検査、安全性の
原子力の日を迎えて

解析評価、防災、規格基準のための試験研究、情報の収集・整理・提供など、原子力施設の安全規制に係わる広い業務を行います。このための組織として、検査業務部、解析評価部、防災支援部、規格基準部、安全情報部、核燃料サイクル施設検査本部の6つの部・本部、本年10月設置の福井事務所、そしてそれらを統括する企画部と総務部を置いています。

業務内容をもう少し具体的に説明すると、原子力発電所や核燃料サイクル施設などの設計段階では、国（経済産業省、すなわち保安院）はまず安全審査や詳細な設計と工事計画の認可を行います。この時、申請者の行った解析が妥当かどうかを、機構は機構の所有する解析コードでチェック（クロスチェック）します。例えば最近では、日本原燃の施設の解析のミスを指摘しました。これらは解析評価部の業務です。施設の建設段階では、保安院と分担して使用前検査や燃料体検査、そして機構に任されている検査として溶接検査等を行います。施設が運転段階になると、保安院と分担して定期検査を行うと共に、機構に任されている新しい定期安全管理審査などを行います。その他機構に任されている核燃料物質の運搬や放射性廃棄物の廃棄時の確認があります。そして、国の指示により施設への立入検査などを行います。これらは検査業務部の業務ですが、核燃料サイクル施設の検査は、六ヶ所村に核燃料サイクル施設検査本部を設置して行っています。

防災支援部では原子力防災に係わる業務を行います。原子力災害に備えて、全国20カ所の原子力施設の近傍にある緊急事態応急対策拠点施設（オフサイトセンター）の整備、国や地方自治体の原子力防災訓練の支援や原子力防災研修等により国の緊急時対応を支援しています。

規格基準部は、安全規制に必要な調査・試験・研究を行い、基準類の策定や規制制度の見直しに反映させており、機構の予算の大きな部分がこのために使われています。調査・試験・研究課題は多岐にわたるのですが、特に、原子力施設の耐震安定性、高経年化対策、原子力施設の廃止措置や放射性廃棄物処分などがこれから重要な課題であると考えております。廃棄物におけるクリアランスレベル検証も今後の機関の業務に予定されています。その他、事故・トラブル事象における人間・組織要因、MOX燃料を含む核燃料問題など多くの課題があります。

安全情報部は、国内外の安全に係わる情報の収集・分析、そして提供を行っています。国内外の各規制機関からの膨大な安全情報をデータベース化しており、またトラブル情報の分析と提供を行っています。また機構は、国の規制機関や規制支援機関との国際協力活動を活発に行っています。

機構は、昨年8月の関西電力美浜発電所3号機の二次系配管破断事故では、事故後直ちに情報収集分析や国内外への情報発信、原因究明活動を行うと共に、経産大臣からの指示に基づき初めて立入検査を行うなど重要な役割を果たしました。

（機構業務の特徴）

機構はこのようにかなり専門的な業務を行うわけですが、しかし独自の試験装置などを持っているわけではありません。機構はハードの試験研究装置などを持たないということが設立時からの基本的考え方になっています。そこで一口に言えば規制と専門事項に係わる試験や解析との間をつなぐ役割、すなわち専門職としては試験・研究マネジメントを業務として行っていると考えて良いと思います。具体的な試験や（内部でできるものは除いた）解析等は外部に発注して行うわけですが、できるだけ競争入札で行うようにという独立法人としての業務遂行における基本原則を踏まえて、極めて高い専門性を有する業務を如何に行うかが課題となっています。

機構が行っている業務の多くは機構設立前には財団法人が委託を受けて行っていたことを既に述べました。当時、財団法人では電力・メーカーを含む各企業からの出向者が多かった関係で、財団法人から機構へ来た職員は現在も出向者が多い状況です。しかし、検査や安全審査などのクロスチェック解析など規制に直接関係す
● 原子力の日を迎えて

この業を出向者には行わせない、ということで検査業務部と核燃料サイクル施設検査本部、及び解析評価部の職員には出向者を含まない構成になっています。しかし、防災、安全情報、規格基準のように実際の施設の状況の知識が必要不可欠な分野においては出向者を含んでおります。独立行政法人としてこれをどのように考えていかが今後の課題です。

機構は、原子力の安全確保に係わる業務を行っていますが、直接的には規制行政庁である保険院の規制に係わる業務を運営財務省で受けて行っています。しかし、我が国の原子力規制は、規制行政庁の業務をチェックしている原子力安全委員会があります。機構は、安全委員会の安全審査におけるクロスチェック解析を専門家機関として委託を受けて行っています。その国土交通省など他省庁の規制に係わる業務も委託を受けて行います。原子力の安全確保に係わる独立行政法人として、業務をどこまで広げられるか一つの課題です。

（理事長となって）

ところで、長年にわたり筑波大学で教官をおり定年退官し、私にとって、新設の機構の理事長に任命されたのは自分でも驚きでした。しかし、「学会でいろいろ生意気なことを言っているようだが、それなら新しい組織で実際にやってみろ」と言われたような気がし、「学会でやっていったことの総仕上げの意味でやってみよう」と思ったものでした。90年代に入り機械学会や原子力学会の理事などを務めるようになった。今日の国際化、情報化時代、特に高度技術依存社会における専門技術者・研究者の社会的責任と学会の在り方の議論に参加し、社会的責任を果たすべき大きな学会は、研究者のサロンではなく、技術の社会的説明責任を率先して果たさなければならないということで、学会における基準的作業や技術者倫理などに努力しました。大学を定年になった年に日本原子力学会の副会長から会長になりましたが、このような考えて学会組織の改革を目指しました。社会的責任を果たす学会としてJCO事故について中立的な立場から事故調査委員会を設置し本年初めに報告書を刊行しました。会長になってしばらくして東電問題が起こり、さらに名古屋高裁愛知支部の「名古屋」判決があり、国側敗訴となりましたが、これらに対し学会としてできる限りの対応をしたと考えています。

（終わりに）

専門家集団としての機構の職員の質は極めて高いのですが、平均年齢が52歳ということから分かるように、長年各企業で原子力を進めてきた人が殆どです。しかし産業界も原子力の今後の役割を大きな問題としていますので、人材確保問題がこれからの機構の課題と思っています。

これまでの2年間は、立ち上げ期で役職者一同無我夢中で業務を進めてきました。しかし、現在の原子力の規制制度と我々の業務が最適なものとは思えません。これからは、機構内の各部署の横の連携を良くして業務の改善を行うと共に、保険院等へも原子力の安全確保のための積極的な提案をしていくことが機構の役割と考えています。

プロフィール

フィルムバッジのできたところ：
乗鞍岳から原研へ

田ノ岡 宏*

フィルムバッジは、その優れた性能と簡便さの故に、放射線を取り扱う人の被ばく線量を測るモニターとして大いに活躍してきた。今やガラス線量計にその座を譲ってしまったが、今なお捨て難いところもある。現に、ベータ線小線源の線量測定にはとても有用である。私は、日本原子力研究所が始まったばかりの時に、1年あまりの短期間であったがフィルムバッジの開発に関わった。奇しくも、今、組織が変わろうとしている原研とフィルムバッジの活躍の歴史は軌を一にしているように見える。

私は、人里離れた乗鞍岳の宇宙線観測所にいたのが、一転して都会の原研に就職して、まず与えられたのがフィルムバッジの調査の仕事であった。当時の面識らった思い出をまじえに乗鞍のことから書かせていただく。

1952年、私は名古屋大学の4年生になる時に、成績が良くなかったにも拘らず、志望どおりに乗鞍岳の宇宙線研究チームに加えてもらうことができた。選考面接の時に、遠い地方の重い鉄をかついのをいとまさん、ときた記憶がある。鉄のブロックをトラックに積むと、その重さのためにかしいので、これで果たして山道を登れるのだろうかと思ったものである。当時の乗鞍岳には、戦時中の軍用道路を利用してすでに飛行場の観光ルートがつけていた。高山上から紅葉の名所の平湯峠を経て登ると、山の上は広く開けていて、平坦な斜面が一望でき、観光バスがゆくたびに、人通りに停車所へ出かけたりしたことがある。次年には、冬でも滞在できる共同利用の東大宇宙線観測所が、頂上近くの剱ヶ峰とコロナ観測所のある摩利支天岳との間の鞍部にある肩の小屋近くに新設されて、そこへ移った。ここでは、阪大、神戸大学、名大、山梨大学、大阪大学、気象研、理研のチームがそれぞれ実験していたが、普段の起居を共にしていたので、お互いにとても親密な関係にあった。私は、三浦助教授（のち筑波大学長、故人）をリーダーとする名大グループの名で年少者だった。直接の先輩はラジオでクラシック曲の解説をされた村山さん（のち名大教授）で、音楽の薫陶を受けた。このグループの主目標は、乗鞍に上がると空気線量が10倍にも増えるので、これを利用して新しい核反応を霧箱でとらえることであった。備えつけの1万ガウス電磁石は住友金属製、電離室本体は赤羽の町工場製、電気回路は手作り、心臓部の膨張弁は名大物理教室工房の精密工作によるものだった。ガイガー計数管は日立製では1本3万円もするものだったが、これを300円ぐらいの材料費で手作りで量産できるところまできた。この時のコツは、封入するアルゴンガスの
乗鞍山頂剣ヶ峰から見た夜明けの雲海。
左手近くに槍、穂高。雲海の下は島々谷、松本頂。右手に小さく浅間山。

純度が十分高くなるまで手作りの純化装置を動かし続け、我慢することであった。大学院へ入れてもらえるのは、このためだと思っている。しかし、この計数管の寿命については自信がなかった。

山の生活は辛いこともあったが、楽しい思い出の方が多く残っている。夏は、夜明け前に剣ヶ峰頂上に登って御来光を見いると、太陽が八ヶ岳から昇って来て、たちまち雲が金色に輝き、槍、穂高が目の前に見え、南方足もとに高天が原、さらに、野麦峠の向こうに御嶽山、西には加賀の白山がそびえて見えた。この景色は今も変わっていないだろう。冬は、岐阜県側から長野県側風が吹き抜ける海縁線研のあたりは零下40℃にもなることがある。長野側の大雪渓は上質の粉雪で、目をつぶったままスキーができると言われたほどである。冬の当番交代は、銭殿小屋からスキーにシールをつけて衛の山荘あたりまで森の中を歩き、そこからカンジキにはきてかえて位の壁と言われる急斜面を登り、片道7時間かかってやって着く。特に、最後の肩の小屋の鞍部は風が強く、ある時そこで動けなくなってしまい藤蔓にばったりついていると、棚橋くん（のち東大核研教授）が探しに来てくれて、吹雪の中で助けてもらったことがあった。また、山の音楽仲間だった理研の竹内さんが愛用のファゴットが入った木箱を焼けて中に帰りつけて、私も同じくヴァイオリンを脇にして降りていく途中、吹雪に巻かれて迷ったこともあった。またさらに、火事だ、という声で雪の中へ飛び出すと、燃料タンクのまわりの温保守用がなく、すが燃えていて、吹雪の暗闇の中で、みんなで必死に雪の塊を投げ込んで消し止めたこともあった。

今でこそ、私は毎日発電実験をしているが、そのころ何も分からていない、名大日比野内科からラットを預かった。そのころ問題になっていた食用添加物のバターイエローの発癌性を高山で調べるためであったらしい。ラットが死んだらホルマリンに浸けるという約束で一升瓶のお酒をいただいた。高山医学研のお医者さんが豪傑ぞろいで、夏の野外コンバの時、裸で踊り始めた人の下着を焚火の中に入れて燃やしてしまった話がある。

乗鞍では体力の続く限りがんばったりけど、それでも実績が上がったという訳でもなかった。私の修士論文は“海抜2800メートルにおける陽子運動量スペクトル”という地味なテーマで、それも、チームのデータから合わせてもらったものだったが、これは後年、アメリカでの博士論文“陽子線によるパクテリオファージの失活”につつながることになった。当時は、アメリカで自製加速器による成果がどんどん発表され、まぶしく感じられた。わが国でも東大核研ができ、名大チームの半分がそちらへ移ることになり、大きな変化が始まったようだった。さらに、日本原子力研究所が発足することになり、信濃毎日新聞の記者がその施設はどこに決まったのかと問い合わせる電話をしているのをそばで聞いたが、まさか自分がそこへ行くとは思わなかった。

1956年、乗鞍岳から東京のど真中の新橋へ、全く一転した生活に移った。信じられないことだが、原研の採用通知が全く届いていなかった。機も給料も出ているのに3ヶ月も姿を見せないとはどういうことか、と、間接、問合せがあって初めてびっくりして、東京へ飛んで行った。原研は旧東電ビルの2階にあって、私は研究第4グループ配属ということだった。このグループは
保健物理担当で、木村二郎先生がその長を兼任しておられた。当時は就職難だった。名大物理にガキ研というガキの仲間がいて、就職できたら最初の給料は仲間におごるという約束だった。私は初任給1ヶ月分1万3千円くらいだったと思うが、仲間4-5人に一晩大いにおごった。

発足したばかりの財団法人日本原子力研究所は活気に溢れていて、現場の長は柿原さん（東芝から。東京ニューニューニューニュース社創設者）、平田さん（理研、故人）、藤田さん（電気試験所）、石原さん、私とは不同期の古田さん、田村さん、沼内さん（のち保健物理部長）、白鳥さん（沼内内務人）、事務職員として秋本さんと女性の高野さん、という構成だった。ポスの柿原さんは親分肌で、上の方々とはよく衝突されらしいが、部下の面倒をとてもよくみて下され、私はこの方のためなら命を預けてもよいとまで思った。柿原さんはのち国産1号炉へ移って、初めて原子の火をとおす大役を担われた。財団法人から特殊法人へ移ること、村主さん（電気試験所のち動力炉試験部長、東海研副所長）がアメリカから帰され、さらに坂垣さん、亀田さん（いずれも気象研から）、丸山さん、赤石さん（学卒第1期）が加わられた。個人被ばく線量測定用のフィルムバッジの開発の必要性に迫られて、その司令塔は村主さんであった。村主さんは、私に命じてアメリカのNucle-onics誌に掲載されているフィルムバッジに関する論文を勉強させ、それをJIS委員会で報告させた。フィルターの厚さの計算、フィルム感度の特性などが主題であった。委員会には千代田テクノルの前身である日本保安用品協会の荒川さん、安田さんがおられ、密接に情報を交換し合った。千代田の名称がこのとき一旦消えたのは中立性を明示するためだった、と村主さんが言っておられる。フィルムバッジはJIS 1型がまず作られ、続いてJIS 2型が作られた。フィルムの試験には、まだ原研には実験室がなかったので竹橋の電気試験所分室を使わせていただいた。部長の伊藤さんはちょっとこわい感じの方で、部下の、のちに科技庁国際課長として活躍された菊地さんに、実際に親切に面倒をみていただいた。輸入したばかりのコバルト60線源を、フィルムの照射のために使わせていた。ビカビカ光るナマの線源を取り出してこわごわ見せていただいたこともあった。

暗室での現像作業は、ジメジメしていてあまり気持ちのよいものではなく、相棒の丸山さんには、早く切り上げて一杯やろう、とよく言われた。そうこうしている間に、バッジの試作品が現場の職員に配られ、個人被ばく線量測定テストが始まった。ある時、一枚のフィルムが真黒になっているので、すわ一大事、とばかりに報告したが、それは私たちの腕前を試すために、ある人ができたばかりのヴァンデグラフのビームをわざと照射したものであることがわかかった。このころ、沼内さんたちと必死に理解しようと勉強した組織内吸収線量、Cavity Principleの問題は、今でも放射線防護の課題である。ずっと最近になって、千代田テクノル松の糸が中央研究所の共同研究でガラス線量計をマウスの体内に埋め込んで測定測定をしたが、これこそ当時の難問の答になるのではないかと思う。

ところで、そのころ、フィルムバッジに入れる肝心のフィルムをどのメーカーの製品にするか、まだ正式に決まっていなかった。国産の富士フィルムは開発中だった。外国製のものをくらべて検討してみたらということで、デュボン社製のバッジ用フィルムをかなり大量に注文した。これが富士フィルムの担当者の耳に入り、せっかく国産品を作ろうとしているのと、大いに苦情を申し込まれた。柿原さんは、テスト段階だから気にするなと慰めて下さった。また、事故の場合などに備えて低線量用と大線量用の2種類のフィルムを一つのバッジに入れるかどうか、の議論があった。反跳
陽子の飛跡を検出できるようにした速中性子用のフィルムは、東大核研に移った宇宙線原子核乾板グループの方々に教えていただき、さくらのフィルムでいっそうなところまでできていた。CR-39 などがまだない時で、現象する手間が短くなった。

保健物理部では、1 年の間わわれわれの敬愛された柿原先生も平田さんも原子炉部門へ移られ、唯一の生物学者だった藤田さんもスウェーデンへ留学されて、青木部長（電気試験所）の赴任とともに陣容が大きく変わった。私は急選アメリカのロチェスター大学へ留学を命じられた。留学を延長して一旦退職し、そして、再び1964年に原研に復職して帰ってみると、東海村はすっかり立派に整備されて、保健物理部も大きく変わっていた。私は、留学が長過ぎた罰の意味があったのだろうが、保物研究室ではなく、個人被ばく管理の班長を命じられた。

個人管理という言葉は個人を管理するということしかなく、平野ほかの研究員の方が言いつつて、「なるほどと思ったりしました。当時の部長は牧野さん、直接の上司は宮永さん（のち原子力安全委員）だった。個人管理班は若い人たちの集団で、山本さん、西さん、備後さん（のち部長）、泉さん、女性の斎藤さん（赤石夫人）、稲葉さん（備後夫人）たちと、とてもよく気の合った結局の強いチームを組んだ。年長の丸山さんも、別格としてこの中に出っ入りされていました。高校新卒で入ってきたばかりの古田さんとベアを組んで、松林の多い原研敷地内をフィルムパッジ集配のためにスクーターで駆け廻ったことは、短い期間であったが、楽しい思い出となった。当時、このチームで所内のフィルムの現像、黒化度測定、線量評価をしていた。

東海村で一年ばかり経って、発足したばかりの国立がんセンターの新しい研究室へ移ることになった。1965年当時、放射線障害防止法がまだ徹底していなくて、がんセンターは放射線取扱事業所として承認されていなかった。規制がだんだんと厳しくなって、もうこれ以上 RI 協会が RI を売ってくれないという事態になったころ、私は研究所の主任者に任じられた。その整備にかかってから承認されるまで数年かったが、この間、がんセンター担当だった千代田保安用品（千代田テクノルの前身）の安江さん（現・安西メディカル会長）には大変な協力をいただいた。原研保健物理部での経験が、この時とても役に立ったと思う。当時の都庁放射線安全課には書類をかかえて何度も通った。この経験は、さらにずっとあとになって、研究所新築の時に、放射線管理の理に合わせて使い易い設計を考える上で大変役に立った。

振り返ってみると、いろいろなことがあったが、新しくできた組織……私の場合には、原研、国立がんセンター……に最初から参加できたことは大変愉快なことで、幸運であったと思う。フィルムパッジの最初的模索の時代を、今、懐かしく思う。

最後に、昔の記憶をよみがえらせるにいろいろお教え下さった村主 進氏、亀田和久氏、沼宮内健雄氏、赤石 準氏に感謝申し上げます。

プロフィール

1931年　和歌山県田辺市生まれ。子供のころ近所の南方熊楠翁をよくみかけた。
1953年　名古屋大学理学部物理学科卒。引き続き大学院へ。
1956年　日本原子力研究所入所、研究員。研究第4グループ（のち保健物理部）。
1957-63年　米国ロチェスター大学に留学。（保健物理研修コースから生物物理大学院へ、1962 Ph.D.）さらにオール大学分子生物学研究部門に Post Doctoral Fellow して滞在。
1964年　原研保健物理部に復職。
1965-93年　国立がんセンター研究所、放射線研究部研究員。（1970 部長、1988-92 日本放射線影響学会会長）
1993-2001年　同センター客員研究員。電力中央研究所研究顧問。
2002年-現在　放射線医学総合研究所客員協力研究員。日本放射線影響学会、日本癌学会名誉会員。
五感に訴えない放射線のニュースをオオトリの六感で捉えるカレント・トピックス

“所持の制限”

鴻 知己

2005年6月14日の朝日新聞（東京版）は、核燃料サイクル機構が鳥取県に残しているウラン鉱石採掘の残土、約3千立方を米国に運び、同国の民間企業で精錬処理することにした、と報じている。同紙の解説によると、国内に引き受け手がなく、最高裁判決を受けていたためであるという。こんなことを海外で、国策、つまり国の制度設計として、行っている例を、筆者は知らない。調査を尽くしたわけではないが、他に例を見ることはないと考えられる。

放射線の人体に及ぼす影響（の質）は、受ける量によってのみ異なり、放射線の出力の違いに寄らない。そして、我々は自然起因の放射線の海の中で命の請みを続けていて、放射線への暴露をゼロにするのは实际問題として不可能であり、また意味を持たない。それ故、放射線防止の国策は、放射線そのものではなく“特定の放射線源”の使用を規制することにしている。“特定”に当たっては、放射線放出の能力に応じて“規制免除”の基準が決められていてそれに達しないものは除外される。

これら“特定線源”は、許可又は届出を行った者（許可使用者と略記）しか使用、保管、廃棄、などの取扱ができない。

問題は、一般人が自由に取扱できる、免除基準に至らない「非放射性物質」が、許可使用者には認めていないことに起因する。論理の整合が取られていないのである。

FBNews 9月号に掲載いたしました「保物セミナー2005」におきまして一部プログラムの変更依頼がありましたのでご連絡いたします。
変更内容は下記のとおりです。

4. 原子力産業従事者における疫学調査の現状
(1) 国際がん研究機関による原子力産業従事者の疫学調査の統合解釈
(2) アジアにおける原子力施設の疫学調査
(3) 日本の原子力発電施設等放射線業務従事者の疫学調査
加藤和明の放射線一口講義

個人線量計の着用基準(1)

病院や診療所といった医療の現場で“医療放射線”の近くにいるMD（Medical Doctor）やCM（Co-Medical）の知り合いに個人線量計を着用し被曝線量の統計的監視を勧めたことが何度かあった。すると決まって、「何ヶ月か続けてみたが検出下限以下」の報告しかない。「安全であることは確認できたので着用はもう止めることにした」というのであった。

一理在するように思われるのだが、もしこの考えが当を得たものであるとするならば、医療以外の目的で使われている放射線の近くで働いている人たちは、有意の被曝が報告されることが減らない場合でも線量計着用している現実をどう理解したらよいのであろうか？彼らの行動は合理性を欠いているのであろうか？

実は、国民を放射線の望ましくない影響から守るために国が採っている方策は、特定の放射線源を指定し、その使用を規制することである。使用の許可を与えられた者、その線源の影響を受ける全ての人に対して“放射線安全”を確保する義務を負い、放射線を取り扱う人を職業人（放射線業務従事者）に指定し、その者については個人線量計を用させて、実際に身体に受けた線量を実測することを義務づけているのである。一般人については、立ち入る可能性のある場所を限定し、その場所の放射線レベル（空気線量率の強さや空気中の放射能濃度）や身体が触れることのある物品の放射性污染表面密度が一定の限度を超えないよう監視・管理する。職業人の受ける被曝（職業被曝）と一般人の受ける被曝（公衆被曝）にはそれぞれ被曝の管理基準として線量限度が法令によって定められている。

一方、患者が医療行為の一環として受ける放射線被曝は「医療被曝」と呼ばれているが、これに対しては管理基準としての「線量限度」は設定されていない。国の制度設計が整っている国際放射線防護委員会（ICRP）の放射線防護体系では、医療被曝も防護の対象に含まれる。MDに最適の防護策を講じることを求めていているが、医療行為そのものは患者にとっての便益がリスク（危険）を上回る（当該MDが判断しているはずである）ので、線量に制限は設けないとされているのである。

医療界には、患者の受ける「医療被曝」（日本では医療介護や志願による放射線被曝をこれに含めている）だけでなく「職業被曝」「公衆被曝」も存在することは自明である。これらの被曝に対する防護策は「医療法」の受け持ちということになっている。誤ったことは、医療法での扱いが、放射線防護防止法とか原子炉・核燃料規制法といった他の法令と整合が取れていないということに起因するといわざるを得ない。

法令には、制度設計上の瑕疵や経年変化による劣化が付きものである。公害法を標榜する以上法を冒すことは許されないのが、その制約の下でも「形式にとらわれることなく精神を尊重する」ことはできる。これがこの問題に対する筆者の解答である。一方で行政当局（本当は立法当局なのであるが）に法令の是正を訴えることは勿論必要なことである。

昨今、人々は「安全」より「安心」をと叫ぶ。個人線量計を着用し線量を実測することは「安心」を得るのに大変有効であることを強調しておきたい。
自然に学び自然を真似る原子力
（その1）
藤家 洋一*

1. 自然に学び自然を真似る原子力
今日はお招きいただきましてありがとうございます。昭和31年に日本の原子力開発が始まり、すく東海村で原子力施設が建設され、活気のある研究開発が始まりました。当時大学生だった私も東海村を訪れ、日本の将来がここから始まっているとの感慨を持ちましたが、私自身が原子力の専門家になるとは当時まったく頭にありませんでした。日本社会では原子核研究は善であり、原子力研究は核兵器開発につながるので悪であるとの奇妙な議論が一部の研究者の中にありました。

原子力界の一員となっている今に半世紀近く経ちました。その間原子力はいろいろな困難な状況を経験しながらも原子力発電が基幹電源になりました。日本のエネルギー自給率で断然トップの位置にいます。また放射線利用も医療への応用を始め社会との接点は密になっています。しかしながら原子力を語ることは難しい。我々の身近に原子力を実感させるものがないからです。

原子力って何でしょうか？ 今日は原子力を身近に感じるために星空を見るとところから話を展開していきます。

その前に今日は少し変った見方で自然をそして原子力を捉えてみたいと思いますのでその準備をしましょう。

人間には五つの感覚があるといわれます。

目—— 見る
耳—— 聞く
鼻—— 呼う
舌—— 味わう
肌—— 触れる

第六感をこれに加えてみましょう。
人によっては第六感に優れた人がいます。私は第六感が決して神懸かりなものではなく深い知覚と見識に依存されたひらめきだと思っています。

今日は「見る」と「第六感」を中心に話進めます。「見る」と感覚の中心にしたのは自然は見るから始まるからです。また旧約聖書の創世記にも神は宇宙創造の初日に「光よあれ」と光をこの世に導いて昼と夜を区別しています。見ることでこの世を認識させようとしたのでしょう。

百聞は一見にしかず、の諺どおり聴覚より、視覚です。見てから考えることです。見えるもののは見えますが、見えないものは見えないと考えるのが普通です。しかし、見えないものを見えるようにしてきたのが、科学技術の世界でした。原子力は目に見えない世界の科学技術です。一目で見えない世界を拓く——原子力は科学の世界に潜んでいますが、その能力は宇宙規模で展開されています。さて原子の大きさを考えて見ましょう。原子の大きさは10のマイナス10乗メートル（10^-10m）といわれています。たぶんこれくらいでしょう。1センチ半分にさらに半分にする操作を10回繰り返しますと約1000分の1センチになります。さらに10回繰り返しますと
100万分の1センチになります。さらに半分にする努力をあと6回から7回繰り返すと大体原子の大きさになります。26回繰り返したわけです。1センチも1ミリも肉眼で見えますが、26回繰り返した後は見えるでしょうか？感覚的には近いと考えるか遠いとするかは人によって違うでしょう。しかし現代の科学は電子顕微鏡などでその大きさを映し出しています。

2. 地球を取り巻く自然と人類：太陽と地球の連携（図-1）

人々は今日の文明が化学反応で成り立っていることは理解し、身近に実感できています。慣れてしまってしまったこともないという人もいるかもしれませんが、そんな人達と原子力の話をしても始まらないのです。少なくとも文明を支えていくものが何かを考え、理解しようとしないと原子力すなわち核反応に支配される世界は理解できません。

宇宙の現象を支配するエネルギーは核反応というか、原子力です。地球では化学エネルギーというか化学反応に支配される文明が人類が火を発見しほぼこれを利用し始めてもからこれまで続いてきました。特に産業革命以降頃著になりまして。ここには太陽のエネルギーを地上で化学エネルギーに変化させ、貯蔵してきた植物の働きがあります。太陽と地球の見える連携で人類は使いやすい化学エネルギーを手に入れることができるのです。最近はバイオエネルギーとか化石エネルギーとか呼ばれています。簡単に言えば植物は葉緑素の助けを借りて炭酸ガスと水からブドウ糖を創り、更に高分子化合物であるアミノ酸やタンパク質を創り出しているのです。このエネルギー源の変化に応じ、全体として太陽エネルギーは地球で利用されるよう宇宙に廃棄され、物質からリサイクルする生態系が考えられます。同時に植物を食べられるバイオブッターとも思える化学エネルギーが化石エネルギーとして地下に埋蔵されることとなりました。産業革命とはこの化石エネルギーの一つの石炭に手を付けることから始まったと考えて良いでしょう。

化学反応の文明について考えたことがある人は、マッチで火を点ければ多くのものが燃えることを知っています。火は化学反応がそこで起こっていることを示しているわけであり、また石油文明と云う言葉も知っている。石油文明の意味はそれが何よりもエネルギーの供給だけでなく、多くのものを我々に提供しているわけです。ナ

![地表取り巻く自然と人類: 太陽と地球の連携](image-url)
イロンやビニール、そしてプラスチックも。
そしてさらに進んで、地球上の森羅万象が太陽と地球の見事な連携で成り立っていることを理解できます。雨が降るのも、風が吹くのも、植物が育つのも、動物が生きていくのもみんなそうです（図–2）。ここには太陽と地球の見事な連携があるのです。太陽が道が起っているかは見ているだけでは分かりません。この解明には長い時間がかかりました。太陽で何が起こっているかはまた後で見てみましょう。

3. 星空の彼方に：超新星爆発は何を語るか（図–3）
坂本九の「見上げてごらん夜の星を」という歌が有名ですが、夜空を見ることから始まろう。この歌は「かすかな光が」と空から光が来ることも歌っています。宇宙の情報は光や宇宙線が運んでくれます。夜空の空は人々の想像力をかき立てません。夜は幻想的で、見ることと第六感が連携プレイをしてくれそうです。
この図は夜の星空ですが、超新星爆発の様子も示しています。超新星爆発で云えば、1054年に東洋座のあたりで起きた超新星爆発の様子を鎌倉前期の歌聖藤原定家の伝説だと思われますが、彼の明月記に記しています。
明月記
「超新星の出現例1054年4月中旬以降、午
前1時から3時超新星がオリオン座の3ツ星に現れ、東方に見え、おうし座のゼータ星の近くで輝き、明るさは木星のようであった。

星を見ることはメソポタミヤでは占星術に、ギリシャでは天文学に展開されました。日食の予言も可能になりました。

ルネッサンス期になって望遠鏡が出来、空の星を観測するようになりました。これがガリレイの地動説につながり、ケプラーの「惑星の軌道」の解明につながりました。

余談ですが、地動説を社会が理解するまでに一千年以上かかっています。社会との折り合いがよくありませんでした。特にキリスト教の承認をところとはならず、フィレンツェのオッサナ大公の庇護の下にあったガリレイでも宗教裁判に敗れ、郊外に幽閉されました。

原子力もそうでしょうか、プルトニウムが人工物としてやり玉に挙がり、人間が扱うとは批判する向きもあります。プルトニウムは地球誕生の時にはたくさんあったのですから、いま自然にはほとんど見あたりません。このようなことはまた後で見てみましょう。

4. ビッグバン：ある時突然宇宙が誕生した（図4）

さてここで「えいやっと」宇宙を見てみましょう。時間も空間もどちらも混ぜです。私は今宇宙をこの図一つで眺めています。この図はいくつかのことを示しています。まず宇宙創造です。

ビッグバン

ある時無限にエネルギーのある、無限に小さい粒が不安定になり膨張を始めた。137億年程前のことです。それに詳しく言うようですが、最近名古屋大学のグループがはじき出した宇宙の年齢です。そこから宇宙が始まり、時間も空間も、物質も生まれた。それ以前のことは分からない。

— 予言はその前はと聞かれれば答えようがない。また宇宙を果てがるのかと聞かれても明らかには答えられない—— 精々、今から光をとらえて宇宙の果てを探りに行っても光が帰ってくるまでに何十億年もなく、おそらく人類は過去の存在になっているだろうから意味がないとも言いませんか。

科学的に不可能と分かっていることに挑戦しても意味がないことです。しかし可能性があれば挑戦していくのが、科学技術創造立国を目
指す日本の基本姿勢でなければならないでしょう。

ビッグバン宇宙の概念を打ち出したロシヤ生まれの物理学者ジョー・ガモフはマンハッタン計画に参加し、原爆実験の火の玉の中に宇宙創生のイメージを描いたと云われます。彼はまた太陽のエネルギーが核融合反応によるものと提唱。この辺はまさに第6感の面目躍如といえるでしょう。

恒星の誕生と元素の創成

宇宙はそれこそ筆舌に表せないような高温状態の中で放射線が飛び交い膨張する過程で次第に冷えて行きました。現在の宇宙の温度は絶対温度で2度程度になっている。ただ星の中でのみ、核反応が起こり、高温状態でエネルギーを放出しています。

クォークや反粒子などの楽しい議論を省略すれば、膨張の過程で水素やヘリウムなどの素粒子が生まれてきました。またそれらが集まって星を作り、その中で次第に重い元素が生まれてきましたが、銀以上のものは星の中では出来なかったのです。吸熱反応のため、元素創生のエネルギーが不足していたためです。この辺のストーリーは簡単な算術で出来ます。

超新星爆発

星が大きく光り輝いているほど燃え方が速く遂には重力崩壊を起こして華々しい最期を遂げることになります。これを超新星爆発と呼び、太陽がこれまでに放出してきた全エネルギーと比べても比較にならない巨大なエネルギーを放出することになります。そのときは爆発によってあらゆるものが吹き飛びまます。

重力崩壊で陽子を電子を取り込んで中性子になる。その結果中性子が豊富な元素の誕生が始まりました。鉄より重い金、銀、ウランなどが重力のエネルギーを集めて生まれ、周間に放出される。角砂糖1個の重さが富士山と同じ程度になります。信じられますか？

太陽はそれに比べれば質量が小さく超新星爆発は起こらない。逆に、燃料を燃やしていくと中心の燃料がなくなり、次第に外側に燃焼領域が移って行きます。それとともに太陽の膨張が起こり、やがて地球もその中に取り込まれていくと考えられている。地球の万物はすべては焼き失っています。そのとき人類はどの天体に逃げ出せるか？大変な移民政策が必要でしょう。膨大な数の宇宙ロケットと避難食を準備しなければならないのです。

超新星爆発によって鉄より重いウランなどが出来ることは分かりましたが、この際多くの粒子が宇宙空間に放出されます。これが宇宙線の起源とされています。このような高速に加速された宇宙線は宇宙の場所や磁場で曲がられたり、速度が変わったりします。この辺の物理は加速器の原理や製作に応用されてきました。

最近のレーザーの社会進出はめざましいものがあり、白内障の治療等にも応用されています。このような現代科学の枠も実は天体現象として観測されています。火星や金星の周辺にはレーザーでなくレーザー現象も観測されています。これまででも驚かれるでしょうが、更に核融合炉も核分裂炉も人間が科学の枠を集めて創り上げる前に自然界に存在していたのです。核融合反応は恒星の中で起こっているので恒星の原子力、核分裂反応は今から20億年前地球に存在したことが確認され惑星の原子力と呼ばれています。前者は軽い原子核を利用した原子力であり、後者はウランのように重い原子核を使った原子力です。

このような自然には、宇宙には核融合炉、核分裂炉、加速器、レーザーすべてが存在します。私たちは自然を学び自然を真似ることでより根元的な核反応が支配する次の文明を支える科学技術を創り上げていくことが大切です。これは化学反応が支配する文明の終焉を意味するのでではなくてなく、現在人類が抱える環境問題、エネルギー問題を同時に解決して、より高度の文明に移行していくことを意味しています。
テクノルコーナー

＜製品紹介＞

放射線計測器校正装置

近年、様々な分野で“品質保証”に関する話題を耳にします。品質保証における要求事項として標準規格化されたものがISO-9000シリーズであることは、広く認知されています。放射線・放射性物質取り扱う施設においても、ISO-9000シリーズを取得する事業所が増えています。

ISO-9001の7.6項“監視機器及び測定機器の管理”に、“国際または国家計量標準にトレーサ能力な計量標準に照らして校正または検証する……（以下略）”とあります。本事項を満足する手段として、計量法トレーサビリティ制度（JCSS）があります。

弊社が提供する放射線計測器用の校正装置は、γ線分野において、国家標準からトレースされた計量標準を有していますので、本装置によって校正された機器類は、測定値の正当性が保証されます。

核燃料サイクル開発機構、敦賀本部、新型転換炉ふげん発電所殿では、放射線測定プロセスの品質管理用として、測定プロセスの総合的管理および計測機器類が意図された用途に適合していることを確認するため、事業所内の計量標準として本装置を今年の3月に導入されました。導入の際は、国家標準との繋がりを外的的に証明できるJCSS校正証明書を作行致しました。

弊社では、その他にも原子力施設を中心に校正装置の設計・製作・据付からJCSS校正証明書の発行まで一貫して実施しています。

装置の概要は以下の通りです。

＜装置概要＞

校正照射装置は、主に線源格納部、移動式校正台車部、操作制御部により構成されています。使用する線源は通常、線源格納部内の遮蔽容器に収納されています。計測器等の校正時には遠隔操作により、照射を行うことができる構造となっています。
＜主な仕様＞

照射方式：コリメート照射方式
収納線源：137Cs、60Co
校正範囲：任意（距離及び線源強度による）
単位：Sv、Gy
校正対象：γ線用の線量率計・線量計等
制御盤：ITV用モニタ（４分割表示可）、制御専用ソフト等
安全設備：照射中回転等、非常停止スイッチ、立入検知、移動式校正台車接触スイッチ
その他の：照射用ラック、校正室内ITVカメラ、非常用電源装置

写真は、ふげん発電所殿に納入した装置です。
掲載を許可戴きましたふげん発電所殿に、この場を借りて御礼申し上げます。

＜執筆紹介＞
㈱千代田テクノル
原子力事業部 技術グループ
森本 智文
PET サマーセミナー2005 in 霧島に参加して

佐野 智久

去る8月22〜24日の3日間、PET サマーセミナーが、鹿児島県の霧島で開催されました。

鹿児島空港から車に揺られること1時間程です、今年のPETセミナーの舞台でありました霧島に到着しました。会場は高千穂の峰や新燃岳といった霧島連山間近の丘の上にあり、遠くには錦江湾に浮かぶ桜島を望む雄大な自然のパノラマが広がります。

今年のPETセミナーは、登録者数500名を超え、過去最高の盛んなものとなりました。背景に、PET診療の有用性と保険適用、さらに今年からFDG製剤の商業供給が始まる見込みであることなどが挙げられます。

私の参加目的はと申しますと、機器展示会にFDG投与時の被ばく低減のための装置を展示することであり、残念ながらセミナーの内容を聴講することはほとんどできませんでした。が、隙を見てセミナー会場に足を運びますと、どの会場も席が一杯の状態で、発表・報告後には熱い議論が交わされていました。

今回当社が機器展示会に出品した製品の一つである、放射性薬剤投与補助器「ラディア・ガード」は、放射性薬剤投与時の被ばくを低減しようとするもので、その開発経緯・被ばく低減効果・投与効率については、当社大洗研究所の藤崎主幹研究員から一般演題での発表も行いました。詳細な紹介はまたのお会いとさせて頂きますが、展示会場にも多くの先生方が足を運んで私の説明を聞いてくださいました。「被ばく」に対してどの先生も、非常に真剣に（低減効果・コスト・安全性など）考えておられ、放射線利用の安全を提供するという我々の責任の重さを改めて認識することとなりました。

とはいえ、長時間にわたって展示会場に張り付いているのは、正直なところ堪えるものがあります。そこを、辺り一面の緑とおいしい食事が癒してくれたのは、言うまでもありません。
－ 平成17年度主任者部会年次大会 －
（第46回放射線管理研修会）のお知らせ

平成17年度主任者部会年次大会実行委員会

平成17年度主任者部会年次大会のメインテーマは、「放射線利用の安全性」としました。このテーマの趣旨の一つは今年が広島・長崎の原爆投下60周年であることを放射線の危険性について再認識するということです。また、もう一つの趣旨として、大変な法令改正を受けて、これから始まる合理的規制と安全性について考えようということです。新法令への対応についてはできるだけ具体的な情報を提供し、意見交換や討論を十分に行えるように、中国四国支部を中心とした実行委員会が準備を進めています。多くの皆様の参加をお待ちしております。

開催日程・会場
● 開催日：平成17年11月17日（木）10時00分から 11月18日（金）12時30分まで
● 会場：広島県民文化センター

交流会：螺城会館5階「サフィア」（広島県民文化センター内）

参加費：10,000円（交流会参加費込み）

見学会：11月18日（金）13時00分から15時30分まで

見学会① (財)放射線影響研究所
定員：40名
参加費：1,000円（会場受付けで納め下さい）

② 仁科芳雄博士の生家と仁科会館
定員：20名
交通費：実費負担

※見学会参加をご希望の方は10月31日（火）までに、見学会コース及び氏名、所属及び連絡先を明記して主任者部会事務局までお申し込み下さい。

＜会場へのアクセス＞
広島県民文化センターは、JR 広島駅から、市電またはバスで約10分、喫茶町または本通り下車徒歩3分。空路ご利用の場合は広島空港から直通バスで約60分、広島バスセンター下車徒歩3分です。同会場の詳細な情報は下記のwwwサイトをご覧下さい。

＜プログラムのハイライト＞
● 特別講演I（11月17日 11:00～12:00）
恒例の文化科学者科学技術・学術政策局原子力安全課放射線規制室長の小原徹氏による特別講演が予定されています。改正法令に関する内容も含めて、行政の立場から、最新の放射線安全管理についてお話ししていただきます。

● 特別講演II・III（11月17日 17:30～18:15、11月18日 11:00～12:00）
特別講演IIでは広島大学の星正治氏から、最近決まった広島・長崎の被爆者の線量評価体系（DSO2）について紹介していただきました。さらにセミナーライフ医大連携実験場周辺住民の被ばく線量調査のための研究について紹介していただく予定です。特別講演IIIでは同じく広島大学の神谷二氏から平成16年度に発足した日本新医被ばく公害防制関連研究会について紹介していただくとともに、最近進歩の目覚ましい放射線の人体影響の解明とその治療の展望について概説していただく予定です。

● シンポジウム（11月17日 13:15～15:25）
本年、大幅改正が行われた法令に具体的に対応してゆくために「新法令への対応の実際」をテーマとしてシンポジウムを開催します。シンポジウムには文部科学省放射線規制局の担当者、井出利恵氏（広島大学医歯薬総合研究所）、南原順氏（原子力安全技術センター）、安田昌昌氏（島津製作所）を予定しております。会場から積極的に質問討論にご参加ください。

● 分科会報告（11月17日15:35～16:50、11月18日 9:30～10:45／螺城会館5階）
現在活動中の5分科会が2日間に分けて個別会場で開催されます。多数の方がご参加をお待ちしています。

○11月17日 15:35～16:30 放射線計測分科会
選任者代表分科会 ルビー
PET 施設管理研究会 パール東
○11月18日 9:30～10:45 教育訓練問題検討分科会

● 相談コーナー（11月17日 15:35～16:50、11月18日 9:30～10:45／地下1階展示ロビー）

新法令への対応の他、日頃の疑問やお悩みのことをなどについて相談をお受けしますので、気軽にお立ち寄りください。

● ポスター発表（地下2階第2展示室）

B：11月17日 12:30～13:15
B：11月17日 15:35～16:50

ポスター発表時間は17日の12時00分から18日の12時00分までとなっています。ポスター発表分科会はAグループ、偶数番号をBグループとして、責任時間にそれぞれ発表させていただきます。

● 機器展示（11月17日 11:00～17:30、11月18日 9:30～12:00／地下1階展示室）

機器メーカーからの最新の放射線関連機器の展示があります。お時間のとれるときにゆっくりご覧ください。

● 電子資料（11月17日 11:00～17:30、11月18日 9:30～12:00／2階ホワイト）
日本アイツープ協会の出版物を会員限定価格で購入いただけます。

● 交流会（11月17日18:30～20:30／螺城会館5階サフィア）

中国地方に伝わる伝統芸能のほか、酒類として知られていた広島の地酒や広島ならではの料理をお楽しみください。

【連絡先】
○放射線取扱主任者部会事務局
（社）日本アイツープ協会学術課
〒113-8941 東京都文京区本駒込2-28-45
Tel 03-5395-8081 Fax 03-5395-8053 Email gakujutsu@riias.or.jp
サービス部門からのお知らせ

ガラスパッジご担当者の変更依頼はお早めに！

弊社モニタリングサービスでは、ガラスパッジや報告書を確実にお手元へお届けするためにガラスパッジご担当者を登録させていただいております。
ところが、時折お送りしたガラスパッジや報告書が「受取人不在」で戻ってくることがあります。
その原因の１つとしてご担当者が異動、退職されるなど、変更になっている場合が見受けられます。
ガラスパッジのご担当者が変わられたときは、お早めに変更のご連絡をお願い致します。

登録内容の変更などについては、「ご使用者変更連絡票」にご記入の上速やかに弊社測定センターまでFAXしてください。
測定センターFAX：0120-506-984
（測定センターサービス課 野呂瀬）

編集後記

● 今回、自然に学びを真似る原子力という題名で藤研究にご努力いただきました。人間の五感と六感があり、見えているものを見ることや科学技術など「なるほど」と思わせる内容や、自然は循環で成り立てており、自然にはないといわぬけの核融合、核分裂炉、加速器、レーザーなどは自然の中に存在しそれを真似ていたということなのです。
● 藤研究の先生にある人間の五感の記述を見ながら、私にとっての五感はなにがあるかなの思い浮かべたとき趣味という言葉も当てはまるのではないか、例えば、
目＝写真、耳＝音楽、鼻＝アロマテラピー、舌＝グルメ、肌＝ペットという言葉が浮かんでくるのは私だけでしょうか？
● 写真といえば、数年前までは銀塩カメラが主流でしたが、近年ではデジタルカメラの販売台数が増え、一般的な家庭はもとよりプロカメラマンにも普及してきました。観光地にいても銀塩カメラを見ることが少なくなるようになったと思います。
・デジタルカメラは、フィルムを使用した銀塩カメラとは違い、カードメモリーや様々なコンピュータに画像を保存します。その保存形式としてJPEG、TIFF、RAWなど、保存形式の種類が様々です。RAW形式やTIFF形式はほとんどの圧縮されていないので編集しても画像の劣化がほとんどないといわれています。しかし、JPEG形式は高圧縮してファイル保存するのでコピーや情報の削除が起こりやすいため、縮小の度数を変えると画像の劣化が増えると言われています。しかし、写真編集ソフトなどで縮小・拡大の写真を90度回転して保存し、トリミングしJPEG形式で保存すると圧縮の、圧縮をおくことにより画質が更に低下してしまうそうです。画質の低下を極力減らして保存するためには、BMP形式やTIFF形式などの非圧縮形式でファイル保存するのがよいそうですね。

（野呂瀬）

FBNews No.346
発行日／平成17年10月1日
発行人／細田敬和
編集委員／佐々木行忠 小迫智昭 中村尚司 久保寺昭子 加藤和明 塩藤紀道 藤崎三郎
福田光彦 野呂瀬浩也 丸山百合子 滝田和永 佐野哲久 大矢向朱梨 森本智文
発行所／株式会社千代田テクノル キンメ計測事業部
所在地／〒113-8681 東京都文京区湯島1-7-12 千代田田辺の水ビル5階
電話／03-3816-5210 FAX／03-5803-4890
http://www.o-technol.co.jp
印刷／株式会社テクノルサポートシステム

FBN
－禁無断転載－ 定価400円（本体381円）